人教四年级数学下册总复习

来源:中华大课堂

第一单元 四则运算

1、加、减的意义和各部分间的关系

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的积与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被就减数……。减法是加法的逆运算。

(5)加法各部分间的关系:

和=加数+加数

加数=和-另一个加数

(6)减法各部分间的关系:

差=被减数-减数

减数=被减数-差

被减数=减数+差

2、乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数…… 。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数×商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

3、加法、减法、乘法、除法统称为四则运算

4、四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

5、有关0的计算

①一个数和0相加,结果还得原数:

a + 0 =a 0 + a = a

②一个数减去0,结果还得这个数:

a - 0 = a

③一个数减去它自己,结果得零:

a - a = 0

④一个数和0相乘,结果得0:

a × 0 = 0 ; 0 × a = 0

⑤0除以一个非0的数,结果得0:

0 ÷ a = 0

⑥ 0不能做除数:

a÷0 = (无意义)

6、租船问题。

解答租船问题的方法:先假设、再调整。

第二单元 观察物体二

1、正确辨认从上面、前面、左面观察到物体的形状。

2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5、从不同的位置观察,才能更全面地认识一个物体。

【知识要点】

节日礼物(不同位置观察物体的范围不同)

1、随着观察位置的高低与远近变化,能判断出观察对象的画面所发生的相应变化。

2、根据观察到的画面,判断出观察者所在的位置。

红旗广场(不同位置观察物体的形状不同)

1、通过观察、比较一些照片,能够识别和判断拍摄地点与照片的对应关系。

2、通过观察连续拍摄到的一组照片,能够判断照片拍摄的前后顺序。

第三单元 运算定律

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b) +c=a+(b+c)

3、加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)

4、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

(a×b) ×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。

如:125×78×8的简算。

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

(a+b) ×c=a×c+b×c

4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。

a÷b÷c=a÷(b×c)

乘法分配律的应用:

三、简便计算

1.连加的简便计算:

①使用加法结合律

(把和是整十、整百、整千、的结合在一起)

②个位:1与9,2与8,3与7,4与6,5与5,结合。

③十位:0与9,1与8,2与7,3与6,4与5,结合。

2.连减的简便计算:

①连续减去几个数就等于减去这几个数的和。

如:106-26-74=106-(26+74)

②减去几个数的和就等于连续减去这几个数。

如:106-(26+74)=106-26-74

3.加减混合的简便计算:

第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)

例如:

123+38-23=123-23+38

146-78+54=146+54-78

4.连乘的简便计算:

使用乘法结合律:把常见的数结合在一起

25与4;125与8 ;125与80 等

看见25就去找4,看见125就去找8;

5.连除的简便计算:

①连续除以几个数就等于除以这几个数的积。

②除以几个数的积就等于连续除以这几个数。

6.乘、除混合的简便计算:

第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)

例如:27×13÷9=27÷9×13

四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c= a÷(b×c)

1、常见乘法计算:

25×4=100 125×8=1000

五、简便计算示例:

加法和减法——找好朋友

加法和减法——加括号

加法和减法——去括号

乘法和除法——找整与凑整

乘法和除法——乘法和加减法的混合运算

乘法和除法——乘除法混合运算

乘法和除法——除法和加减法的混合运算

六、有关简算的拓展:

102×38-38×2

125×25×32

37×96+37×3+37

125×88

3.25+1.98

10.32-1.98

易错的情况:

0.6+0.4-0.6+0.4

38×99+99

第四单元 小数的意义和性质

1、在进行测量和计算时,往往不能正好得到整数的结果,这时常用(小数)来表示。

分母是10、100、1000……的分数可以用(小数)来表示;

分母是10的分数可以写成(一位)小数,

分母是100的分数可以写成(两位)小数,

分母是1000的分数可以写成(三位)小数……

所以,一位小数表示(十分)之几,

两位小数表示(百分)之几,

三位小数表示(千分)之几……

如:

0.5表示(十分之五),

0.05表示(百分之五),

0.25表示(百分之二十五),

0.005表示(千分之五),

0.025表示千分之二十五)。

2、小数点前面的数叫小数的(整数)部分,小数点后面的数叫小数的(小数)部分,小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。

3、小数的数位顺序表

小数点后面第一位是(十)分位,十分位的计数单位是十分之一,又可以写作0.1;

小数点后面第二位是(百)分位,百分位的计数单位是百分之一,又可以写作0.01;

小数点后面第三位是(千)分位,千分位的计数单位是千分之一,又可以写作0.001……

如:(1)6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)

(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),

8个千分之一(0.001)。

(3)6.378中有(6378)个千分之一(0.001)。

(4)9.426中的4表示4个十分之一(0.1)[4在十分位]

(5)20.375,十分位上的3,表示3个(十分之一);百分位上的7,表示7个(百分之一);千分位上的5,表示5个(千分之一)。

4、小数每相邻两个计数单位间的进率都是10,(10个千分之一是1个百分之一,10个百分之一是1个十分之一,10个十分之一是整数1,或10个0.001是1个0.01 ,10个0.01是1个0.1, 10个0.1是整数1……

5、读小数时,整数部分按照整数的读法去读,小数点读作“点”,小数部分要依次读出每一个数字。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

如:31.031读作:三十一点零三一

6、写小数时,整数部分按照整数的写法来写,小数点写在个位的右下角,小数部分要依次写出每一个数位上的数字。写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。

如:一百二十点零零九八

写作:120.0098

7、在小数的末尾添上“0”或去掉“0”,小数的大小不变,这叫小数的性质。

注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。

如:

0.2= 0.20 = 0.200 =0.2000 =……

1.05=1.050 =0.0500 =0.0500=……

1.080=1.08

10.0800=10.08

100.080000= 100.08

8、小数大小的比较:

先比较整数部分,整数部分大,那个小数就大;整数部分相同,就比较小数部分,十分位相同,就比较百分位,百分位也相同,就比较千分位……

9、小数点的移动:

(1)小数点向右:移动一位,相当于把原数乘10,小数就扩大到原数的10倍;移动两位,相当于把原数乘100,小数就扩大到原数的100倍;移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍……

(2)小数点向左:移动一位,相当于把原数除以10,小数就缩小到原来的;移动两位,相当于把原数除以100,小数就缩小到原来的;移动三位,相当于把原数除以1000,小数就缩小到原来的……

10、不同数量单位的数据之间的改写:

低级单位数÷进率=高级单位数

高级单位数×进率=低级单位数

当进率是10、100、1000……时,可以直接利用小数点的移动来换算。

(1)高级单位转化成低级单位==乘以进率,小数点向右移动。

(2)低级单位转化成高级单位==除以进率,小数点向左移动。

常用的单位:

质量:1吨=1000千克; 1千克=1000克

长度:千米=1000米 1分米=10厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

面积:1平方米= 100平方分米 1平方分米=100平方厘米

1平方千米=100公顷 1公顷=10000平方米

人民币: 1元=10角

1角=10分 1元=100分

11、求近似数时:

(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。

(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。

(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。

(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。

(5)(表示近似数时小数末尾的0不能去掉)

第五单元 三角形

1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。

3、三角形的特性:物理特性:稳定性。

如:自行车的三角架,电线杆上的三角架。

4、边的特性:任意两边之和大于第三边。

5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

6、三角形的分类:

按照角大小来分:锐角三角形,直角三角形,钝角三角形。

按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)

7、三个角都是锐角的三角形叫做锐角三角形。

8、有一个角是直角的三角形叫做直角三角形。

9、有一个角是钝角的三角形叫做钝角三角形。

10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

11、两条边相等的三角形叫做等腰三角形。

12、三条边都相等的三角形叫等边三角形,也叫正三角形。

13、等边三角形是特殊的等腰三角形

14、三角形的内角和等于180度。四边形的内角和是360°有关度数的计算以及格式。

15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。

16、用2个相同的三角形可以拼成一个平行四边形

17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。

19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。

第六单元 小数的加减法

1、笔算小数加、减法的方法:

(1)小数点对齐,也就是相同数位对齐;

(2)从末位算起,算加法时,哪一位数相加满十都要向前一位进1;算减法时,哪一位不够减就要从前一位退1。

(3)得数末尾有 0,一般要把0去掉。

(4)不要忘记了小数点。

2、小数加减混合运算的顺序与整数加减混合运算的顺序相同:

(1)没有括号,按从左往右的顺序依次计算;

(2)有小括号,要先算小括号里面的。

3、整数的运算定律在小数运算中同样适用。在小数四则运算中,恰当地运用加法交换律、结合律及连减的运算性质会使计算更简便。

4. 得数是小数时,(末尾)的0一般要去掉。

5. 一个整数与一个小数相加减时:

① 先在整数的右边点上小数点;

② 再添上与另一个小数部分同样多个数的0;

③ 然后再按照小数加减法的计算方法计算。

6. 得数是小数时,(末尾)的0一般要去掉。

7、验算:

加法验算:

①交换加数的位置再加一遍,看结果与原来是否相同;

②用减法,把和减去一个加数,看差是否与另一个加数相同。

减法验算:

① 用加法,把减数与差相加,看结果是否等于被减数;

② 用减法,把被减数减去差,看是否等于减数。

应用整数运算定律进行小数的简便计算:

整数运算定律在小数运算中同样适用。在小数四则运算中,恰当地运用加法(交换律)、(结合律)及减法的运算性质会使计算更简便。

第七单元 图形的运动二

1、轴对称图形。

如果一个图形沿着一条直线对折,两侧的部分能够完全重合,这个图形就是轴对称图形,这条直线叫做对称轴。

(1)轴对称图形可能有一条对称轴,也可能有多条对称轴。

(2)图形重合时,互相重合的点叫做对应点。互相重合的线段叫做对应线段。

(3)称轴是一条直线,所以在画对称轴时,要画到图形外面,且要用虚线。

2、轴对称图形的性质和特征。

(1)对应点到对称轴的距离是相等的。连接对应点的连接线是互相垂直的。

(2)沿对称轴对折,对应点、对应线段都重合。

3、轴对称图形的画法。

(1)找关键点:找出图形的关键点,分别用字母表示。

(2)数格:数出这些点到对称轴有几格。

(3)描对称点:在对称轴的另一侧找出对应点,每组对应点到对称轴的距离相等地。

(4)连线:按顺序连接原图形关键点的对称点,就画出了所给图形的轴对称图形。

4、正方形的对角线所在的直线是它的对称轴。轴对称图形可以有一条或几条对称轴。

5、长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形都是轴对称图形。

长方形有2条对称轴,

正方形有4条对称轴,

等腰梯形有1条对称轴,

等腰三角形有一条对称轴,

等边三角形有3条对称轴,

线段有1条对称轴,

菱形有2条对称轴,

圆有无数条对称轴,

半圆有一条,

圆环有无数条,

半圆环有一条。

6、平行四边形不是轴对称图形,没有对称轴。(长方形和正方形除外)

7、梯形不一定是轴对称图形。只有等腰梯形是轴对称图形。

8、古今中外,许多著名的建筑就是对称的。比如:中国的赵州桥,印度泰姬陵,英国塔桥,法国埃菲尔铁塔。

9、平移先找图形点,平移完点连起来,注意数点数要数十字。

10、平移不改变图形的大小、形状,只改变图形的位置。

11、利用平移,可以求出不规则图形的面积。

第八单元 平均数和条形统计图

平均数:

1.求平均数的方法:

(1)数据较少:移多补少法.

(2)常用方法:先合后分计算:

总数÷份数=平均数

2.平均数能清楚地表示一组数据的整体水平。

条形统计图:

将两个单式条形统计图合并以后就得到一个复式条形统计图。

复式条形统计图要有图例。

复式条形统计图有横向和纵向两种。

复式条形 统计图 是用两个单位长度表示一个的数量,根据数量的多少画成长短不同的直条,

怎样画横向复式条形统计图

1.准备尺子,铅笔,橡皮等画图工具。

2.注意写单位,画中坐标和横坐标还有日期名字还有横坐标上的“0”。

3.假如位置有限,例如说0到10,到20,假如你写到200,位置绝对有限,你可以在0的上面画波浪线,然后写100(当然其他数也可以,但最标准的还是画闪电线)。

4.例如上图两者要有不同的颜色,假如没有色笔,第一个可以画斜线,第二个可以涂得严严实实。

5.在每个图的下方都要写标题。

复式条形统计图:

【特点】用直条的长短表示数量的多少。【优点】能清楚地看出数量的多少,便于比较两组数据的多少。

后把这些直条按一定的顺序排列起来。从复式条形统计图中很容易看出两者数量的多少。

练习:

第九单元 数学广角-鸡兔同笼

“鸡兔同笼”问题

今有雉兔同笼, 笼子里有若干只鸡和兔。

上有三十五头, 从上面数,有35个头,

下有九十四足, 从下面数,有94只脚。

问雉兔各几何? 鸡和兔各有几只?

猜一猜,鸡兔各有多少只?

鸡兔同笼,从上面数有8个头,从下面数,有26只脚,鸡和兔各有几只?

思路: 鸡有两只脚,兔有4只脚。

鸡兔可能有几只?可能只有一种动物吗,为什么?

不可能都是鸡,因为如果都是鸡就会有16只脚,而题目中是26只脚。也不可能都是兔,因为如果都是兔就会有32只脚。

解题方法:

1、列表法

观察表中的数据,你发现了什么规律?

鸡兔的总只数不变,每多一只鸡,就会少一只兔子,并会减少两只脚。

鸡兔的总只数不变,每多一只兔子,就会少一只鸡,并会增加两只脚。

2、假设法:

假设笼子里全都是鸡:

那么就有:2×8=16(只)

这样就多出:26-16=10(只)

一只兔子比一只鸡多2只脚,也就是有兔子数:10÷2=5(只)

鸡的只数:8-5=3(只)

答:笼子里有3只鸡,5只兔。

假设笼子里全都是兔:

那么就有:4×8=32(只)

这样就多出:32-16=6(只)

一只鸡比一只兔子少2只脚,也就是有鸡的只数:6÷2=3(只)

兔的只数:8-3=5(只)

答:笼子里有3只鸡,5只兔。

结论:

假设的方法

①假设笼子里全是鸡

兔的只数=(实际脚数-2×鸡兔的总只数)÷(4-2)

鸡的只数=鸡兔的总只数-兔的只数

②假设笼子里全是兔

鸡的只数= (4×鸡兔的总只数-实际脚数)÷ (4-2)

兔的只数=鸡兔的总只数-鸡的只数

所以鸡兔同笼问题又叫假设问题。

数学中一种重要的数学思想——假设思想。

你能试着用上面的方法解决前面的“鸡兔同笼”问题吗?

笼子里有若干只鸡和兔。从上 面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?

假设笼子里全都是鸡:

那么就有:2×35=70(只)

这样就多出:94-70=24(只)

一只兔子比一只鸡多2只脚,也就是有兔子数:24÷2=12(只)

鸡的只数:35-12=23(只)

答:笼子里有23只鸡,12只兔。

假设笼子里全都是兔:

那么就有:4×35=140(只)

这样就多出:140-94=46(只)

一只鸡比一只兔子少2只脚,也就是有鸡的只数:46÷2=23(只)

兔的只数:35-23=12(只)

答:笼子里有23只鸡,12只兔。

做一做

1、有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

2、新星小学“环保卫士”小分队12人参加植树活动。男生每人栽了3棵树,女生每人栽了2棵树,一共栽了32棵树。男、女生各有几人?

3、盒子里有大、小两种钢珠共30颗,共重266g。已知大钢珠每颗11g,小钢珠每颗7g。盒中大、小钢珠各有多少颗?

4、 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?

5、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?

6、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有 4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?

阅读57
分享